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A 3-D Model for Finite Viscoelsatic Swelling of Charged Tissues and Gels

Materials like soft biological tissues undergo large viscoelastic deformations during the swelling process. Following
this, it is the goal of this contribution to merge the advances of finite viscoelasticity laws and the state of the art in
electrochemical swelling theories within a well-founded multiphasic concept. The numerical treatment is carried out
fully 3-d in the framework of the FEM.

1. Multiphasic formulation for charged tissues and gels by the Theory of Porous Media
The Theory of Porous Media (TPM) is a macroscopic continuum theory which is based on the theory of mixtures
and the concept of volume fractions. For more details see [1] and citations therein. Proceeding from a binary mixture
consisting of solid and fluid constituents ϕα denoted by α = {S, F}, the solid phase is extended by incorporating the
volume free fixed charges ϕfc. Furthermore, the interstitial fluid ϕF is assumed to be composed of three components
ϕβ , namely the liquid solvent, the cations and the anions, indicated by β = {L, +, −}. By introducing the volume
fractions nα = dvα/dv, the saturation constraint yields

∑

α

nα = nS + nF = 1 , where nF = nL + n+ + n− . (1)

The model under consideration incorporates seven independent fields: the solid displacement uS , the seepage veloc-
ity wF , the relative ion velocities wγ , the entire pore-fluid pressure p and the molar ion concentrations cγ

m, where
γ = {+,−} indicates only the mobile ion constituents. For the liquid solvent it is assumed that

′
xS ≈ ′

xL , i. e. ,
wL ≈ wF . Herein, ( · )′α denotes the material time derivative with respect to ϕα. Proceeding from materially incom-
pressible constituents without any mass exchanges due to chemical reactions, volume balances for the constituents
ϕα, concentration balances for the components ϕβand the quasi-static momentum balances are introduced:

(nα)′α + nαdiv
′
xα= 0 , (nF cβ

m)′β + nF cβ
mdiv

′
xβ= 0 and 0 = divTα + ρα b + p̂α . (2)

Furthermore, Tα = (Tα)T are the symmetric partial Cauchy stress tensors, ρα b represent the body forces and p̂α

are the momentum productions, where p̂S + p̂F = 0 must hold due the overall conservation of momentum.

2. Constitutive equations for the multiphasic model
Proceeding from the effective stress principle, cf. [1], the following relations hold:

Tα = −nαP I + Tα
E , p̂F = P gradnF + p̂F

E . (3)

Herein, the Lagrangean multiplier P maintains the incompressibility condition. Additionally, for the so-called extra
quantities ( · )E , some further constitutive assumptions are needed. From thermodynamical considerations, it follows
that

Tα
E = −nα

∑

β

µβ
F I + Tα

E mech. and p̂F
E =

∑

β

µβ
F gradnF − (nF )2γFR

kF
wF . (4)

Therein µβ
F are the electrochemical potentials of ϕβ per fluid volume [J/m3] and Tα

E mech. is the purely mechanical
part of Tα

E , where TS
E mech is computed from an appropriate viscoelasticity law [2,3] and, a priori, TF

E mech. ≈
0. Moreover, γFR is the effective fluid weight and kF denotes the Darcy permeability. Following this, one can
introduce the entire (hydraulic and osmotic) fluid pressure as p = P +

∑
β µβ

F . For the chemical equations, the molar
electrochemical potentials [J/mol] of the fluid components are needed which are given by

µL
m = µL

m0 + R θ ln
cL
m∑

β cβ
m

, µγ
m = µγ

m0 + R θ ln cγ
m + zγFξ . (5)

These terms are related to µβ
F via µβ

m = µβ
F /cβ

m. Moreover, µβ
m0 are the initial chemical potentials of the components,

R is the universal gas constant, θ is the absolute Kelvin’s temperature, zγ are the valences of the ions, F is the
Faraday constant and ξ is the electrical potential.

3. Interstitial fluid flow, ion diffusion and osmotic pressure
The interstitial fluid flow can be described by an extended Darcy filter law and the ion diffusion by an extended
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Nernst -Planck equation [4]:

nF wF =− kF

γFR

(
gradP − ρFR b +

∑

β

gradµβ
F

)
, cγ

mwγ =−Dγ
[
grad cγ

m + zγcγ
m

F

R θ
grad ξ

]
+ cγ

mwF . (6)

Herein, nF wF is the filter velocity and cγ
mwγ is the relative ion velocity, wherein cγ

mwF is added to the ion velocity
to obtain the ion velocity relative to the solid motion.

The osmotic pressure π is calculated from the osmolarity difference of the internal and external solutions:

π = R θ [(c+
m + c−m) − (c̄+

m + c̄−m)] . (7)

Note that the concentration of the fixed charges does not appear in this equation, since ϕfc is regarded as a part of
the solid meshwork.

4. Numerical treatment of the governing equations
For the numerical treatment, the electroneutrality condition z+c+

m + z−c−m + zfccfc
m = 0 with the valences z+ = 1,

z− = −1 and zfc = −1 of a monovalent solution is used, so that the gradient of the electrical potential can be
calculated by [5]

I = FA (c+
mw+ − c−mw−) = 0 . (8)

Furthermore, the balance relations are weighted by independent test functions and after integration over the spatial
domain Ω with the surface ∂Ω one obtains a displacement-pressure-concentration formulation in the primary variables
uS , p and cm. For more details, cf. [3].

5. Examples: Free swelling of a hydrogel block
To demonstrate the capability of the presented model, a free swelling experiment on hydrogel is simulated by
the FEM. Therefore, a 3-d block is discretized with hexagonal extended Taylor -Hood elements with a quadratic
approximation of uS and linear approximations of p and cm. To initiate swelling, the concentration of the external
solution was decreased from 0.15 mol/l to 0.125 mol/l within 10 sec.

FE simulation with

PANDAS

Free swelling of a soot-
colored hydrogel disc
(J. M. Huyghe, 1999)
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